News & Events


Inaugural Centers Announced for the Materials Genome Initiative


William A. Goddard III, Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics, will be the Caltech Principle Investigator for one of U.S. Department of Energy’s inaugural centers for the Materials Genome Initiative (MGI). The initiative was launched by the White House to “help businesses discover, develop, and deploy new materials twice as fast.” The three inaugural centers are receiving $8 million to “integrate theory and computation with experiment and provide the materials community with advanced tools and techniques in support of the MGI.” Professor Goddard and colleagues will be working on the Computational Synthesis of Materials Software Project with the goal of developing the next-generation of methods and software to predict and control materials processes at the level of electrons. [Learn more]

Tags: William Goddard APhMS research highlights

Atomic Fractals in Metallic Glasses


Julia R. Greer, Professor of Materials Science and Mechanics, and colleagues including graduate student David Chen have shown that metallic glasses has an atomic-level structure although it differs from the periodic lattices that characterize crystalline metals. "Our group has solved this paradox by showing that atoms are only arranged fractally up to a certain scale," Greer says. "Larger than that scale, clusters of atoms are packed randomly and tightly, making a fully dense material, just like a regular metal. So we can have something that is both fractal and fully dense." [Caltech story]

Tags: Julia Greer David Chen APhMS MCE MedE research highlights

New, Ultrathin Optical Devices Shape Light in Exotic Ways


Andrei Faraon, Assistant Professor of Applied Physics and Materials Science, and colleagues have created silicon nanopillars devices capable of manipulating light in ways that are very difficult or impossible to achieve with conventional optical components. The devices are precisely arranged into a honeycomb pattern to create a "metasurface" that can control the paths and properties of passing light waves. Professor Faraon describes, "this new technology is very similar to the one used to print semiconductor chips onto silicon wafers, so you could conceivably manufacture millions of systems such as microscopes or cameras at a time." [Caltech story] [BBC video clip]

Tags: Andrei Faraon APhMS MedE research highlights

Seeing Quantum Motion


Keith Schwab, Professor of Applied Physics, has found a way to observe and control the quantum motion of an object that is large enough to see. Schwab's group has learned how to cool the motion of small micrometer-scale objects to produce the quantum ground state. This quantum motion is theoretically an intrinsic part of the motion of all objects. Schwab and his colleagues designed a device that would allow them to observe this quantum motion and then manipulate it. The ability to control quantum noise could one day be used to improve the precision of very sensitive measurements, such as those designed to search for signs of gravitational waves. [Caltech Story]

Tags: Keith Schwab APhMS research highlights,

New Thin, Flat Lenses Focus Light as Sharply as Curved Lenses


Andrei Faraon, Assistant Professor of Applied Physics and Materials Science, and colleagues have created flat microlenses with performance on a par with conventional, curved lenses. Typically, lenses rely on a curved shape to bend and focus light. But in the tight spaces inside consumer electronics and fiber-optic systems, these rounded lenses can take up a lot of room. The Caltech team’s new flat lenses focus as much as 82 percent of infrared light passing through them. By comparison, previous studies have found that metallic flat lenses have efficiencies of only around a few percent. [Caltech story]

Tags: Andrei Faraon APhMS MedE research highlights

Space Solar Power Initiative


Caltech and Northrop Grumman Corporation have signed a $17.5 million sponsored research agreement for the development of the Space Solar Power Initiative (SSPI). The initiative will develop technologies in three areas: high-efficiency ultralight photovoltaics; ultralight deployable space structures; and phased array and power transmission. "The Space Solar Power Initiative brings together electrical engineers, applied physicists, and aerospace engineers in the type of profound interdisciplinary collaboration that is seamlessly enhanced at a small place like Caltech... We are working on extremely difficult problems that could eventually provide the world with new, and very cost-competitive technology for sustainable energy,” said EAS Chair Ares Rosakis. [Caltech story] [Northrop Grumman Release]

Tags: Ares Rosakis Harry Atwater Ali Hajimiri Sergio Pellegrino APhMS GALCIT EE research highlights energy

Professor Faber Receives the John Jeppson Award


Katherine Faber, Simon Ramo Professor of Materials Science, has received one of the most prestigious awards given by the American Ceramic Society which is the John Jeppson Award. She is being honored “for her important engineering contribution to the understanding of mechanical behavior, especially toughening of ceramics.” More specifically for her study of the fracture of brittle materials and the mechanisms by which such materials can be toughened and strengthened through composite strategies and residual stresses.

The John Jeppson Award recognizes distinguished scientific, technical, or engineering achievements in ceramics. Past recipients include Larry L. Hench, Arthur H. Heuer, Anthony G. Evans, and the only other female member of the distinguished group Della M. Roy. [List of past recipients]

Tags: Katherine Faber APhMS research highlights

How Iron Feels the Heat


Brent Fultz, Barbara and Stanley R. Rawn, Jr., Professor of Materials Science and Applied Physics, and colleagues’ recent work provides evidence for how iron's magnetism plays a role in its curious properties—an understanding that could help researchers develop better and stronger steel. With a better computational model for the thermodynamics of iron at different temperatures—one that takes into account the effects of both magnetism and atomic vibrations—metallurgists will now be able to more accurately predict the thermodynamic properties of iron alloys as they alter their recipes. [Caltech story]

Tags: Brent Fultz APhMS research highlights

New Technique Could Harvest More of the Sun's Energy


Harry A. Atwater, Jr., Howard Hughes Professor of Applied Physics and Materials Science as well as Director of the Resnick Sustainability Institute, and colleagues have created a new technique to harness the lost energy from solar panels. “Silicon absorbs only a certain fraction of the spectrum, and it's transparent to the rest. If I put a photovoltaic module on my roof, the silicon absorbs that portion of the spectrum, and some of that light gets converted into power. But the rest of it ends up just heating up my roof," explains Professor Atwater. Now they have found a way to absorb and make use of these infrared waves with a structure composed not of silicon, but entirely of metal. [Caltech story]

Tags: Harry Atwater APhMS energy research highlights

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics


Austin Minnich, Assistant Professor of Mechanical Engineering and Applied Physics, and colleagues have identified a source of electronic noise that could affect the functioning of instruments operating at very low temperatures, such as devices used in radio telescopes and advanced physics experiments. The team's findings also suggest that it may be possible to develop engineering strategies to make phonon heat transfer more efficient at low temperatures. For example, one possibility might be to change the design of transistors so that phonon generation takes place over a broader volume. "If you can make the phonon generation more spread out, then in principle you could reduce the temperature rise that occurs," Professor Minnich says. "We don't know what the precise strategy will be yet, but now we know the direction we should be going. That's an improvement." [Caltech release]

Tags: Austin Minnich MCE APhMS research highlights

Department of Applied Physics and Materials Science